Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An optimized In-CuGa metallic precursors for chalcopyrite thin films

Identifieur interne : 000325 ( Chine/Analysis ); précédent : 000324; suivant : 000326

An optimized In-CuGa metallic precursors for chalcopyrite thin films

Auteurs : RBID : Pascal:13-0350353

Descripteurs français

English descriptors

Abstract

We report a study of CuGa-In metallic precursors for chalcopyrite thin film. CuGa and In thin films were prepared by DC sputtering at room temperature. Due to low melting point of indium, the sputtering power on indium target was optimized. Then, CuGa and In multilayers were annealed at low temperature. At 120 °C, the annealing treatment could enhance diffusion and alloying of CuGa and In layers; however, at 160 °C, it caused a cohesion and crystalline of indium from the alloy which consequently formed irregular nodules on the film surface. The precursors were selenized to form copper indium gallium selenide (CIGS) thin films. The morphological and structural properties were investigated by scanning electron microscopy, X-ray diffraction and Raman spectra. The relationships between metallic precursors and CIGS films were discussed in the paper. A smooth precursor layer was the key factor to obtain a homogeneous and compact CIGS film.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0350353

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">An optimized In-CuGa metallic precursors for chalcopyrite thin films</title>
<author>
<name sortKey="Han, Jun Feng" uniqKey="Han J">Jun-Feng Han</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>LIAO CHENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Chengdu Green Energy and Green Manufacturing Technology R&D Center</s1>
<s2>Chengdu, Sichuan Province 601207</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu Green Energy and Green Manufacturing Technology R&D Center</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIANG TAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xie, Hua Mu" uniqKey="Xie H">Hua-Mu Xie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>ZHAO KUI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Besland, M P" uniqKey="Besland M">M.-P. Besland</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0350353</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0350353 INIST</idno>
<idno type="RBID">Pascal:13-0350353</idno>
<idno type="wicri:Area/Main/Corpus">000541</idno>
<idno type="wicri:Area/Main/Repository">001150</idno>
<idno type="wicri:Area/Chine/Extraction">000325</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alloying</term>
<term>Annealing</term>
<term>Chalcopyrite</term>
<term>Copper</term>
<term>Diffusion</term>
<term>Gallium</term>
<term>Indium</term>
<term>Melting points</term>
<term>Multilayer</term>
<term>Multilayers</term>
<term>Precursor</term>
<term>Raman spectroscopy</term>
<term>Scanning electron microscopy</term>
<term>Selenides</term>
<term>Sputter deposition</term>
<term>Sputtering</term>
<term>Thin films</term>
<term>X-ray microscopy</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Précurseur</term>
<term>Chalcopyrite</term>
<term>Couche mince</term>
<term>Dépôt pulvérisation</term>
<term>Point fusion</term>
<term>Indium</term>
<term>Pulvérisation irradiation</term>
<term>Couche multimoléculaire</term>
<term>Recuit</term>
<term>Diffusion(transport)</term>
<term>Alliage(action)</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Séléniure</term>
<term>Multicouche</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie RX</term>
<term>Diffraction RX</term>
<term>Spectrométrie Raman</term>
<term>Substrat indium</term>
<term>8115C</term>
<term>6835F</term>
<term>6855J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report a study of CuGa-In metallic precursors for chalcopyrite thin film. CuGa and In thin films were prepared by DC sputtering at room temperature. Due to low melting point of indium, the sputtering power on indium target was optimized. Then, CuGa and In multilayers were annealed at low temperature. At 120 °C, the annealing treatment could enhance diffusion and alloying of CuGa and In layers; however, at 160 °C, it caused a cohesion and crystalline of indium from the alloy which consequently formed irregular nodules on the film surface. The precursors were selenized to form copper indium gallium selenide (CIGS) thin films. The morphological and structural properties were investigated by scanning electron microscopy, X-ray diffraction and Raman spectra. The relationships between metallic precursors and CIGS films were discussed in the paper. A smooth precursor layer was the key factor to obtain a homogeneous and compact CIGS film.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>545</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>An optimized In-CuGa metallic precursors for chalcopyrite thin films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HAN (Jun-Feng)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIAO CHENG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JIANG TAO</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>XIE (Hua-Mu)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHAO KUI</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BESLAND (M.-P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Chengdu Green Energy and Green Manufacturing Technology R&D Center</s1>
<s2>Chengdu, Sichuan Province 601207</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>251-256</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000504221210410</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0350353</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report a study of CuGa-In metallic precursors for chalcopyrite thin film. CuGa and In thin films were prepared by DC sputtering at room temperature. Due to low melting point of indium, the sputtering power on indium target was optimized. Then, CuGa and In multilayers were annealed at low temperature. At 120 °C, the annealing treatment could enhance diffusion and alloying of CuGa and In layers; however, at 160 °C, it caused a cohesion and crystalline of indium from the alloy which consequently formed irregular nodules on the film surface. The precursors were selenized to form copper indium gallium selenide (CIGS) thin films. The morphological and structural properties were investigated by scanning electron microscopy, X-ray diffraction and Raman spectra. The relationships between metallic precursors and CIGS films were discussed in the paper. A smooth precursor layer was the key factor to obtain a homogeneous and compact CIGS film.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H35F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Chalcopyrite</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Chalcopyrite</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Point fusion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Melting points</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Couche multimoléculaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Multilayer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Capa multimolecular</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Alliage(action)</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Alloying</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Séléniure</s0>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Selenides</s0>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Multicouche</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Multilayers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Microscopie RX</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>X-ray microscopy</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>XRD</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Raman spectroscopy</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Substrat indium</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>6835F</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>329</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000325 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000325 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0350353
   |texte=   An optimized In-CuGa metallic precursors for chalcopyrite thin films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024